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Abstract

The foundations of Ringel duality for split quasi-hereditary algebras over commutative Noetherian
rings are strengthened. Several descriptions and properties of the smallest resolving subcategory
containing all standard modules over split quasi-hereditary algebras over commutative Noetherian
rings are provided. In particular, given two split quasi-hereditary algebras A and B, we prove that
any exact equivalence between the smallest resolving subcategory containing all standard modules
over A and the smallest resolving subcategory containing all standard modules over B lifts to a Morita
equivalence between A and B which preserves the quasi-hereditary structure.
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1 Introduction

(Split) quasi-hereditary algebras over commutative Noetherian rings were introduced in [CPS90] and a
module theoretical approach to them was initiated in [Rou08]. Paradigmatic examples of quasi-hereditary
algebras are Schur algebras and blocks of the BGG category O of a complex semi-simple Lie algebra, and
both of these examples admit integral versions (see for example [Cru22b]). Furthermore, going integrally
is important for modular representation theory and there are phenomena in quasi-hereditary algebras
over fields that become easier to visualise and comprehend by studying split quasi-hereditary algebras
over commutative Noetherian rings (see for example [Cru22c, 8.2]).

Continuing [Cru23], this paper is about consolidating the foundations of the theory of split highest
weight categories. The focus is on the structure of F(∆̃), in particular on understanding why F(∆̃)
is a resolving subcategory of A-mod in the integral setup and how a choice of a characteristic tilting
module determines F(∆̃) also in the integral setup. Some proofs carry over almost unchanged from the
classical case to the integral setup while others require more work. Indeed, in the general setting, there
are obstructions that make it impossible to mimic the proofs of the classical case to our situation. For
instance, the categories F(∆̃) and A-mod are not, in general, Krull-Schmidt categories and not all objects
admit a projective cover. Furthemore some proofs will follow ideas of [Rou08], with some modifications
that are hoped to make the contents more accessible. This paper provides background material needed
in [Cru22b, Cru22c].

The main objects in the theory of quasi-hereditary algebras are the standard modules, and these
are precisely the simple objects in the exact category of all modules admitting a filtration by standard
modules. In the integral setup, this category does not necessarily contain all projective modules nor are
standard modules necessarily indecomposable. To fix this issue Rouquier in [Rou08] studied the larger
category F(∆̃) in a split quasi-hereditary algebra. This one is defined as the category whose modules
admit a finite filtration by modules in the additive closure of standard modules.

Our main result (see Theorem 6.1) establishes that the subcategory F(∆̃) completely determines the
split quasi-hereditary structure on A.
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Theorem (6.1). Let A and A′ be two split quasi-hereditary algebras with standard modules {∆(λ) : λ ∈ Λ}
and {∆′(γ) : γ ∈ Γ}, respectively. Then, any exact equivalence Φ: F(∆̃) → F(∆̃′) lifts to a Morita
equivalence F : A-mod → A′-mod such that the following diagram of functors is commutative, up to
isomorphism,

A-mod A′-mod

F(∆̃) F(∆̃′)

F

Φ

.

Moreover, F is an equivalence of highest weight categories in the sense of [Rou08].

Split quasi-hereditary algebras behave quite well under change of rings techniques (see for example
[Cru23, Subsection 3.1]) and they form a class closed under taking the opposite algebra. To further
illustrate that point in Proposition 5.3 we prove the following.

Proposition (5.3). Let R be a commutative Noetherian ring. Let A be a split quasi-hereditary R-algebra
with standard modules {∆(λ) : λ ∈ Λ}. Suppose that N admits a finite filtration by standard modules over
the opposite algebra Aop. Then, the functor N ⊗A − : F(∆̃) → R-proj is a well-defined exact functor.

This fact explains the existence of many base change properties used in the literature of split quasi-
hereditary algebras, for instance [KSX01, 2.5].

In the integral setup, basic characteristic tilting modules are not necessarily unique. However, adapt-
ing the classical theory to the integral setup, we establish that Ringel duality exists in the integral setup.
That is, the Ringel dual of the Ringel dual is again, up to isomorphism, the original split quasi-hereditary
algebra. Further, using Theorem 6.1 we prove that the Ringel dual admits the following characterisation.

Corollary (7.3). Let A be a split quasi-hereditary algebra with standard modules {∆(λ) : λ ∈ Λ} and let
B be a split quasi-hereditary algebra with costandard modules {℧(χ) : χ ∈ X}. Then, B is a Ringel dual
of A if and only if there exists an exact equivalence between the categories F(∆̃) and F(℧̃).

The structure of this paper is as follows: We will start in Section 3 by looking at split quasi-hereditary
algebras from the point of view of costandard modules and the exact category of modules having a finite
filtration with factors in the additive closure of costandard modules, F(∇̃). In particular, we present in
Theorem 3.5 an alternative characterization of split quasi-hereditary algebras using costandard modules.
In Section 4, we see that F(∆̃) and F(∇̃) completely determine each other by forming an Ext-orthogonal
pair in A-mod∩R-proj. In Subsection 4.1, a characteristic tilting module is constructed so that it belongs
both in F(∆̃) and in F(∇̃) while at the same time every M ∈ F(∆̃) admits a coresolution by modules in
the additive closure of a module T ∈ F(∆̃)∩F(∇̃). We finish Subsection 4.1 by showing that although no
uniqueness of basic characteristic tilting modules can be expected, distinct characteristic tilting modules
have the same additive closure. In Section 5, we study the costandard modules and characteristic tilting
modules under change of ground ring. In particular, endomorphism algebras of modules in the additive
closure of a characteristic tilting module have a base change property. In Section 6, we establish that
exact equivalences between exact subcategories of modules having a finite filtration by summands of direct
sum of copies of standard modules over split highest weight categories can be lifted to exact equivalences
between the ambient split highest weight categories. In Section 7, we establish that split quasi-hereditary
algebras also occur in pairs in the integral setup. Further, we prove that checking Ringel self-duality
for split quasi-hereditary algebras over local commutative Noetherian rings can be reduced to checking
Ringel self-duality in the finite-dimensional case. We conclude Section 7 by providing a brief theoretical
argument that many integral cellular structures arise as endomorphism algebras of direct summands of
characteristic tilting modules.
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2 Preliminaries

In the following, we are going to present the terminology and notation to be used throughout the paper.
In particular, we will follow the same terminology and notation presented in [Cru23, Cru22b], and hence
for undefined terminology or notation we refer the reader to [Cru23, Cru22b]. Let R be a commutative
Noetherian ring with identity. We will denote by MaxSpecR the set of all maximal ideals of R. We say
that an R-algebra A is a projective Noetherian R-algebra if the regular module A is finitely generated
and projective as R-module. We will denote by A-mod the category of finitely generated left A-modules
and by A-proj the full subcategory of A-mod whose modules are projective. Given M ∈ A-mod, we
denote by addAM the additive closure of M . By generator (over A), we mean a module M ∈ A-mod
whose additive closure contains the regular module A. We say that a module is a progenerator if it
is both a projective module and a generator. Given an R-algebra, we will denote by Aop the opposite
algebra of A and by D the standard duality functor D = HomR(−, R) : A-mod → Aop-mod. We say
that an exact sequence of A-modules is (A,R)-exact if it splits as exact sequence of R-modules. An
(A,R)-monomorphism is a monomorphism of A-modules which splits as monomorphism of R-modules.
We say that a module M in A-mod∩R-proj is (A,R)-injective if M ∈addDA. Given m ∈ MaxSpecR
and M ∈ A-mod, we will denote by Mm the localisation of M at the maximal ideal m. Further, we will
write M(m) to denote the module M/mM ≃ R(m)⊗RM , where R(m) denotes the field R/m. Similarly,
given an R-algebra A, we can consider the algebras Am and A(m).

A module M over R is called invertible if there exists an R-module N such that M ⊗R N ≃ R.
The collection of all invertible R-modules forms a group known as the Picard group of R which we will
denote it by Pic(R).

Remark 2.1. Let M ∈ R-proj. M is an invertible R-module if and only if M(m) ≃ R(m) for every
m ∈ MaxSpecR. In fact, for all m ∈ MaxSpecR there exists nm ∈ N ∪ {0} so that Mm ≃ Rnm

m and so
R(m) ≃Mm(m) ≃ R(m)nm for all m ∈ MaxSpecR.

Recall the following fact that covariant Hom functors preserve finite direct sums, and hence commutes
with tensoring with a projective module over the ground ring.

Lemma 2.2. Let A be a projective Noetherian R-algebra. Let M,N ∈ A-mod and U ∈ R-proj. Then,
the R-homomorphism

ςM,N,U : HomA(M,N)⊗R U → HomA(M,N ⊗R U),

given by g ⊗ u 7→ g(−)⊗ u is an R-isomorphism.

Proof. Since for all modules U1, U2 ∈ R-mod there are commutative diagrams

HomA(M,N)⊗R U1 ⊕HomA(M,N)⊗R U2 HomA(M,N ⊗R U1)⊕HomA(M,N ⊗R U2)

HomA(M,N)⊗R (U1 ⊕ U2) HomA(M,N ⊗R (U1 ⊕ U2))

ςM,N,U1
⊕ςM,N,U2

≃ ≃
ςM,N,U1⊕U2

, (1)

it is enough to show that ςM,N,R is an R-isomorphism. But, this isomorphism is obtained by regarding
ςM,N,R in the following commutative diagram

HomA(M,N)⊗R R HomA(M,N ⊗R R)

HomA(M,N) HomA(M,N)

ςM,N,R

µHomA(M,N) HomA(M,µN ) , (2)

where µX denotes the multiplication map for any R-module X. In fact, for all f ∈ HomA(M,N),

HomA(M,µN ) ◦ ςM,N,R(f ⊗ 1R)(m) = µN ◦ ςM,N,R(f ⊗ 1R)(m) = µN (f(m)⊗R 1R) = f(m), m ∈M.

Hence, ςM,N,R is an R-isomorphism.
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Split quasi-hereditary algebras over Noetherian commutative rings were introduced in [CPS90]. We
recall now the module-theoretical definition of split quasi-hereditary algebras given in [Rou08].

Definition 2.3. Given a projective Noetherian R-algebra A and a collection of finitely generated left A-
modules {∆(λ) : λ ∈ Λ} indexed by a poset Λ, we say that (A, {∆(λ)λ∈Λ}) is a split quasi-hereditary
R-algebra if the following conditions hold:

(i) The modules ∆(λ) belong to A-mod∩R-proj.

(ii) Given λ, µ ∈ Λ, if HomA(∆(λ),∆(µ)) ̸= 0, then λ ≤ µ.

(iii) EndA(∆(λ)) ≃ R, for all λ ∈ Λ.

(iv) Given λ ∈ Λ, there is P (λ) ∈ A-proj and an exact sequence 0 → C(λ) → P (λ) → ∆(λ) → 0 such
that C(λ) has a finite filtration by modules of the form ∆(µ)⊗R Uµ with Uµ ∈ R-proj and µ > λ.

(v) addA

(⊕
λ∈Λ

P (λ)

)
= A-proj.

It is common also to say that under these conditions (A-mod, {∆(λ)λ∈Λ}) is a split highest weight
category.

Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. We will write ∆ to denote the set {∆(λ) : λ ∈ Λ}
and ∆̃ to denote the set {∆(λ)⊗R Uλ : λ ∈ Λ, Uλ ∈ R-proj}. Given a subposet Λ′ ⊂ Λ we will de-
note by ∆̃Λ\Λ′ the set {∆(λ) ⊗R Uλ : λ ∈ Λ \ Λ′, Uλ ∈ R-proj}. By ∆̃µ>λ we will denote the set

{∆(µ)⊗R Uµ : µ ∈ Λ, µ > λ,Uµ ∈ R-proj}. Similarly, we will use the notations ∆̃µ̸=λ, ∆̃µ<λ, and the re-

spective variants replacing ∆̃ with ∆. For eachm ∈ MaxSpecR, by ∆(m) we mean the set {∆(λ)(m) : λ ∈ Λ}.
Given a set of A-modules θ, we will denote by F(θ) the full subcategory of A-mod whose modules admit
a filtration 0 =Mt+1 ⊂Mt ⊂ · · · ⊂M1 =M with Mi/Mi+1 ∈ θ, 1 ≤ i ≤ t, for some natural number t.

By M(A) we denote the set of isomorphism classes of projective R-split A-modules. Here by a
projective R-split A-module we mean a projective A-module L being a progenerator as R-module so
that for each M ∈ A-proj the canonical morphism

τL,M : L⊗R HomA(L,M) →M, l ⊗ f 7→ f(l), (3)

is an (A,R)-monomorphism. Projective R-split A-modules are useful objects that allow many properties
of split quasi-hereditary algebras to be proved using induction methods. Indeed, given a projective
Noetherian R-algebra A and a collection of finitely generated left A-modules {∆(λ) : λ ∈ Λ} indexed
by a poset Λ with maximal element α, (A, {∆(λ)λ∈Λ}) is a split quasi-hereditary algebra if and only if
∆(α) ∈ M(A) and (A/J, {∆(λ)λ∈Λ\{α}}) is a split quasi-hereditary R-algebra with J = im τ∆(α) (see
[Rou08, Lemma 4.12] or [Cru23, Lemma B.0.4]). The ideal J in this setup is called split heredity ideal
and all split heredity ideals arise in this way (see for example [Cru23, Proposition A.2.5]).

Split quasi-hereditary algebras can also be defined through the existence of split heredity chains. A
chain of ideals 0 ⊂ Jt ⊂ Jt−1 ⊂ · · · ⊂ J1 ⊂ A is called a split heredity chain if each ideal Ji/Ji+1

is a split heredity ideal in A/Ji+1 for 1 ≤ i ≤ t. Then, a projective Noetherian R-algebra A is split
quasi-hereditary if and only if it admits a split heredity chain (see for example [Rou08, Theorem 4.6] or
[Cru23, Theorem 3.3.4]). The following remark is quite useful to relate tensor products of modules over
a split quasi-hereditary algebra and over a quotient of a split quasi-hereditary algebra.

Remark 2.4. Let A be a projective Noetherian R-algebra and let J be an ideal of A. If Y ∈ A/J-mod
and X ∈ (A/J)op-mod so that X ⊗A Y,X ⊗A/J Y ∈ R-proj, then X ⊗A Y ≃ X ⊗A/J Y. In fact,
D(X ⊗A Y ) ≃ HomA(Y,DX) ≃ HomA/J(Y,DX) ≃ D(X ⊗A/J Y ) (see also [Cru22a, Proposition 2.1]).
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3 Existence of costandard modules

In this section, we present an equivalent definition of split quasi-hereditary algebras over commutative
Noetherian rings R using costandard modules and (A,R)-injective modules.

Proposition 3.1. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Then, there is a set {∇(λ)}λ∈Λ

of A-modules, unique up to isomorphism, with the following properties:

(i) (Aop, {D∇(λ)λ∈Λ}) is a split quasi-hereditary algebra.

(ii) Given λ, β ∈ Λ, then ExtiA(∆(λ),∇(β)) =

{
R if i = 0 and λ = β

0 otherwise
.

Proof. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra and let Λ → {1, . . . , t}, λ 7→ iλ be an
increasing bijection. A is split quasi-hereditary with some heredity chain 0 = Jt+1 ⊂ Jt ⊂ · · · ⊂ J1 = A
(see for example [Cru23, Theorem 3.3.4] or [Rou08, Theorem 4.16]). By [Cru23, Theorem 3.3.8], Aop is
split quasi-hereditary with split heredity chain 0 = Jopt+1 ⊂ Jopt ⊂ · · · ⊂ Jop1 = Aop. Again by [Rou08,
Theorem 4.16], (Aop-mod, {∆∗(λ)λ∈Λ}) is a split highest weight category.

Let λ, β ∈ Λ. Assume β ̸> λ. As ∆∗(λ) ∈ M(Aop/Jopiλ+1), we obtain that ∆∗(β) ∈ Aop/Jopiλ -mod
because of Aop/Jopiλ+1/J

op
iλ
/Jopiλ+1-mod ≃ Aop/Jopiλ -mod. Thus, D∆∗(β) ∈ A/Jiλ -mod. Since ∆(λ) ∈

M(A/Jiλ+1) we obtain that Exti≥0
A (∆(λ), D∆∗(β)) = 0 and Exti>0

A (∆(λ), D∆∗(λ)) = 0. By symmetry,

Exti≥0
Aop(∆∗(λ), D∆(β)) = 0. By [Cru22a, Proposition 2.2, Lemma 2.15], if λ ̸= β, then

Exti≥0
A (∆(λ), D∆∗(β)) ≃ Exti≥0

Aop(∆
∗(β), D∆(λ)) = 0. (4)

The R-module Uλ = HomA(∆(λ), D∆∗(λ)) is invertible over R (see for example [Rou08, proof of
Proposition 4.19]). For each λ ∈ Λ, define ∇(λ) = DUλ⊗RD∆∗(λ). Observe that ∇(λ) ∈addAD∆∗(λ).

It follows that Exti≥0
A (∆(λ),∇(β)) = Exti>0

A (∆(λ),∇(λ)) = 0 if λ ̸= β. For (ii), it remains to show that
HomA(∆(λ),∇(λ)) ≃ R for every λ ∈ Λ.

Recall that EndR(∆
∗(λ)) ≃ HomA(Jiλ/Jiλ+1, A/Jiλ+1) (see [Cru23, Remark A.1.5]). By Tensor-Hom

adjunction, Uλ ≃ D(∆∗(λ)⊗A∆(λ)) and recall Remark 2.4 with∇(λ) ∈ R-proj and ∆(λ) ∈ A/Jiλ+1-proj.
Thus combining all these facts with [Cru22b, Lemma 2.1.3] we obtain that

HomA(∆(λ),∇(λ)) ≃ HomA(∆(λ),∆∗(λ)⊗A ∆(λ)⊗R D∆∗(λ))

≃ HomA(∆(λ),HomR(∆
∗(λ), R)⊗R ∆∗(λ)⊗A ∆(λ))

≃ HomA(∆(λ),HomR(∆
∗(λ),∆∗(λ))⊗A ∆(λ))

≃ HomA(∆(λ),HomA/Jiλ+1
(Jiλ/Jiλ+1, A/Jiλ+1)⊗A/Jiλ+1

∆(λ))

≃ HomA(∆(λ),HomA(Jiλ/Jiλ+1,∆(λ))) ≃ HomA(Jiλ/Jiλ+1 ⊗A ∆(λ),∆(λ))

≃ HomA(∆(λ)⊗R HomA(∆(λ), A/Jiλ+1)⊗A/Jiλ+1
∆(λ),∆(λ))

≃ HomA(∆(λ)⊗R HomA(∆(λ),∆(λ)),∆(λ)) ≃ EndA(∆(λ)) ≃ R.

By Tensor-Hom adjunction and ∆∗(λ) ∈ R-proj,

D∇(λ) ≃ D(DUλ ⊗R D∆∗(λ)) ≃ HomR(D∆∗(λ), Uλ) ≃ DD∆∗(λ)⊗R Uλ ≃ ∆∗(λ)⊗R Uλ.

Hence, D∇(λ)m ≃ ∆∗(λ)m for every m ∈ MaxSpecR. By Theorem 3.1.3 of [Cru23], (i) follows.
For the uniqueness part, we refer to [Rou08, proof of Proposition 4.19]).

From now on, we will denote by ∆op(λ), λ ∈ Λ, the standard modules of the opposite algebra of
(A, {∆(λ)λ∈Λ}).
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Corollary 3.2. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Then, {D∆(λ) : λ ∈ Λ} are
costandard modules in Aop.

Proof. Note that ((Aop)op-mod, {DD∆(λ)λ∈Λ}) = (A, {∆(λ)λ∈Λ}) is a split highest weight category. By
[Cru22a, Proposition 2.2, Lemma 2.15], for any λ, β ∈ Λ,

ExtiAop(D∇(λ), D∆(β)) ≃ ExtiA(∆(β),∇(λ)) =

{
R if λ = β, i = 0

0 otherwise.
(5)

By the uniqueness of costandard modules in Proposition 3.1, the result follows.

Remark 3.3. If λ ∈ Λ is maximal, then DHomA(∆(λ), A) ≃ ∇(λ). In fact, HomA(∆(λ), A) ∈ M(Aop)
by Lemma A.1.8 of [Cru23] and

HomA(∆(λ), DHomA(∆(λ), A)) ≃ HomAop(HomA(∆(λ), A), D∆(λ)) ≃ D∆(λ)⊗A ∆(λ) ≃ R.

Proposition 3.4. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈ A-mod such that M
is (A,R)-injective and projective over R. Let Λ → {1, . . . , t}, λ 7→ iλ be an increasing bijection and set
∆iλ := ∆(λ). Then, there exists a filtration 0 ⊂ I1 ⊂ · · · ⊂ In = M, with Ii/Ii−1 ≃ Ui ⊗R ∇i, for some
Ui ∈ R-proj . Furthermore,

(a) If Ext1A(∇(α),∇(β)) ̸= 0, then α > β.

(b) If ExtiA(∇(α),∇(β)) ̸= 0 for some i > 0, then α > β. In particular, ExtiA(∇(α),∇(α)) = 0, i > 0.

Proof. DM is a projective Aop-module (see for example [Cru22a, Lemma 2.11]). Recall that (Aop, D∇(λ))
is split highest weight category. There exists a filtration 0 = Pn+1 ⊂ Pn ⊂ · · · ⊂ P1 = DM with
Pi/Pi+1 ≃ D∇i ⊗R Ui, 1 ≤ i ≤ n (see for example [Rou08, Proposition 4.13] or [Cru23, Proposition
B.0.5]). Applying D yields the exact sequence

0 → D(D∇i ⊗R Ui) → DPi → DPi+1 → 0. (6)

Note that D(D∇i ⊗R Ui) ≃ HomR(Ui,HomR(D∇i, R)) ≃ HomR(Ui,∇i) ≃ DUi ⊗R ∇i. In particular,
DPn ≃ DUn ⊗R ∇n and DP1 ≃ M . Now by induction using at each step the filtration of DPi+1 and
the exact sequence (6) we can construct a filtration of DPi: 0 ⊂ Ii ⊂ Ii+1 ⊂ · · · ⊂ In = DPi, satisfying
Ij/Ij−1 ≃ DUj ⊗R ∇j .

The second part follows from [Rou08, Proposition 4.13] together with Proposition 3.1 and Lemma
2.15 of [Cru22a].

As usual, denote by ∇̃ the set {∇(λ) ⊗R Uλ : Uλ ∈ R-proj}. This means that the filtrations for
M ∈ F(∇̃) can be chosen so that the costandard modules with the lowest index appear at the bottom of
the filtration (see also its dual version in [Cru23, Proposition B.0.6]). Analogously to the case of standard
modules, we will use the notations ∇̃µ>λ and ∇̃µ<λ.

Theorem 3.5. Let A be a projective Noetherian R-algebra and let Λ be a poset. Then, there exists
modules {∆(λ) : λ ∈ Λ} such that (A, {∆(λ)λ∈Λ}) is split quasi-hereditary if and only if there exist
modules {∇(λ) : λ ∈ Λ} satisfying the following properties:

(i) The modules ∇(λ) ∈ A-mod are projective over R for every λ ∈ Λ.

(ii) Given α, β ∈ Λ, if HomA(∇(α),∇(β)) ̸= 0, then α ≥ β.

(iii) EndA(∇(λ)) ≃ R, λ ∈ Λ.

(iv) For each λ ∈ Λ, there exists an (A,R)-injective module which is projective as R-module I(λ) together
with an exact sequence 0 → ∇(λ) → I(λ) → K(λ) → 0, K(λ) ∈ F(∇̃µ>λ).
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(v) DAA ∈add

(⊕
λ∈Λ

I(λ)

)
, where AA denotes the right regular A-module.

Proof. Assume that there exists modules {∆(λ) : λ ∈ Λ} such that (A, {∆(λ)λ∈Λ}) is split quasi-hereditary.
By Proposition 3.1, (Aop, {D∇(λ)λ∈Λ}) is a split quasi-hereditary algebra. Applying [Cru22a, Proposi-
tion 2.2] to axioms (ii) and (iii) of Definition 2.3 we obtain (ii) and (iii). Applying D to the remaining
axioms, the remaining conditions follow (see also Proposition 3.4).

The previous argument also shows that conditions (i), (ii), (iii), (iv) and (v) are equivalent to
(Aop, {D∇(λ)λ∈Λ}) being a quasi-hereditary algebra. Hence, the result follows applying Proposition
3.1(i) to (Aop, {D∇(λ)λ∈Λ}).

Lemma 3.6. [Rou08, Lemma 4.21]Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Let M,N ∈
A-mod. The following holds.

(a) If M ∈ F(∆̃), then ExtiA(M,∇(λ)) = 0, i > 0.

(b) If N ∈ F(∇̃), then ExtiA(∆(λ), N) = 0, i > 0.

(c) If M ∈ F(∆̃) and N ∈ F(∇̃), then ExtiA(M,N) = 0, i > 0.

(d) If M ∈ F(∆̃) or M ∈ F(∇̃), then M ∈ R-proj.

Proof. Observe that for i > 0 and every β, λ ∈ Λ, U ∈ R-proj the R-module ExtiA(∆(β)⊗R U,∇(λ)) is
in the additive closure of ExtiA(∆(β),∇(λ)). Hence, ExtiA(∆(β)⊗R U,∇(λ)) = 0 by Proposition 3.1.

Let M ∈ F(∆̃). There is a filtration

0 = Pn+1 ⊂ Pn ⊂ · · · ⊂ P1 =M, with Pi/Pi+1 ≃ ∆i ⊗R Ui. (7)

Let λ ∈ Λ. Applying HomA(−,∇(λ)) to the exact sequence of Pi yields the exact sequence

0 = ExtjA(∆i ⊗R Ui) → ExtjA(Pi,∇(λ)) → ExtjA(Pi+1,∇(λ)) → Extj+1
A (∆i ⊗R Ui,∇(λ)) = 0, ∀j > 1.

We conclude, for j > 1,ExtjA(Pi,∇(λ)) ≃ ExtjA(Pi+1,∇(λ)) ≃ ExtjA(Pn,∇(λ)) = ExtjA(∆n,∇(λ)) = 0. So
(a) holds. Since ∆i ⊗R Ui is projective over R all the exact sequences 0 → Pi+1 → Pi → ∆i ⊗R Ui → 0.
are split over R. Thus, every Pi is projective over R. In particular, M ∈ R-proj. The argument is
analogous for M ∈ F(∇̃).

The proof of b) is analogous now applying the functor HomA(∆(λ),−) to the exact sequences given by
a filtration of N ∈ F(∇̃). Let N ∈ F(∇̃). Applying HomA(−, N) to the exact sequences of the filtration
(7) we get the isomorphism Extj>0

A (Pi, N) ≃ Extj>0
A (Pi+1, N).

Therefore, 0 = Extj>0
A (∆ ⊗R Un, N) = Extj>0

A (Pn, N) ≃ Extj>0
A (P1, N) = Extj>0

A (M,N). Assume

M ∈ F(∆̃).

4 On Ext-projective and Ext-injective objects of F(∆̃)

The following result is Lemma 4.21 of [Rou08]. For quasi-hereditary algebras over fields, there are many
proofs of this result in the literature (see for example [Rin91]). However, for quasi-hereditary algebras
over commutative Noetherian rings as far as the author knows this result can only be found in [Rou08].
We present a different approach than the one used in [Rou08], also because it is not clear to the author
why M/M0 is projective over R using Rouquier’s approach.

Theorem 4.1. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈ R-proj∩A-mod.

1. If Ext1A(M,∇(λ)) = 0, ∀λ ∈ Λ, then M ∈ F(∆̃).
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2. If Ext1A(∆(λ),M) = 0, ∀λ ∈ Λ, then M ∈ F(∇̃).

Proof. Assume that Ext1A(M,∇(λ)) = 0 for some M ∈ R-proj∩A-mod. By induction on the size of
filtrations of modules in F(∇̃) we deduce that Ext1A(M,N) = 0 for every N ∈ F(∇̃). Let λ ∈ Λ be maxi-
mal. Thus, ∆(λ) ∈ M(A). Recall that τ∆(λ),A is a left and right (A,R)-monomorphism (see for example
[Cru23, Lemma A.1.8., Proposition A.1.4.]). Analogously, we can consider the left A-homomorphism
τ∆(λ),M : ∆(λ)⊗R HomA(∆(λ),M) →M . If M ∈ F(∆̃), then it is possible to construct a filtration with
∆(λ) ⊗R Uλ appearing at the bottom, where Uλ is a projective R-module (possibly the zero module).
Therefore, we want to show that τ∆(λ),M is an (A,R)-monomorphism. If we show in addition that its

cokernel belongs to F(∆̃), then we are done.
Claim A. We can relate τ∆(λ),A ⊗AM and τ∆(λ),M through the following commutative diagram:

∆(λ)⊗R HomA(∆(λ), A)⊗AM A⊗AM

∆(λ)⊗R HomA(∆(λ),M) M

τ∆(λ),A⊗AM

∆(λ)⊗Rψ≃ µM≃
τ∆(λ),M

, (8)

where µM is the multiplication map and ψ is the natural isomorphism provided by the isomorphism of
functors HomA(∆(λ), A)⊗A − ≃ HomA(∆(λ),−) : A-mod → R-mod. In fact,

τ∆(λ),M∆(λ)⊗R ψ(l ⊗ f ⊗m) = τ∆(λ),M (l ⊗ ψ(f ⊗m)) = ψ(f ⊗m)(l) = f(l)m (9)

µM ◦ τ∆(λ),A ⊗AM(l ⊗ f ⊗m) = µM (f(l)⊗m) = f(l)m, l ∈ ∆(λ), f ∈ HomA(∆(λ), A),m ∈M. (10)

Claim B. There are isomorphisms δ and θ making the following diagram commutative

∆(λ)⊗R HomA(∆(λ), A)⊗AM A⊗AM

DHomA(M,D(∆(λ)⊗R HomA(∆(λ), A)) DHomA(M,DA)

τ∆(λ),A⊗AM

δ≃ θ≃
DHomA(M,Dτ∆(λ),A)

. (11)

Note that by Tensor-Hom adjunction DHomA(M,DA) ≃ DDM . Hence, the map
θ ∈ HomA(A ⊗A M,DHomA(M,DA)) given by θ(a ⊗ m)(g) = g(am)(1A) is an isomorphism. Fur-
ther, as left A-modules,

DHomA(M,D(∆(λ)⊗R HomA(∆(λ), A)) ≃ DD(∆(λ)⊗R HomA(∆(λ), A)⊗AM)

≃ ∆(λ)⊗R HomA(∆(λ), A)⊗AM.

Denote by δ ∈ HomA(∆(λ) ⊗R HomA(∆(λ), A) ⊗A M,DHomA(M,D(∆(λ) ⊗R HomA(∆(λ), A))) this
isomorphism. Explicitly, for every l ∈ ∆(λ), f ∈ HomA(∆(λ), A), m ∈M,

δ(l ⊗ f ⊗m)(g) = g(m)(l ⊗ f), g ∈ HomA(M,D(∆(λ)⊗R HomA(∆(λ), A)).

Let l ⊗ f ⊗m ∈ ∆(λ)⊗R HomA(∆(λ), A)⊗AM , g ∈ HomA(M,DA). Then,

DHomA(M,Dτ∆(λ),A) ◦ δ(l ⊗ f ⊗m)(g) = δ(l ⊗ f ⊗m)HomA(M,Dτ∆(λ),A)(g)

= δ(l ⊗ f ⊗m)(Dτ∆(λ),A ◦ g) = Dτ∆(λ),Ag(m)(l ⊗ f) = g(m) ◦ τ∆(λ),A(l ⊗ f) = g(m)(f(l)).

On the other hand,

θτ∆(λ),A ⊗AM(l ⊗ f ⊗m)(g) = θ(τ∆(λ),A(l ⊗ f)⊗m)(g) = θ(f(l)⊗m)(g)

= g(f(l)m)(1A) = (f(l) · g(m))(1A) = g(m)(1Af(l)) = g(m)(f(l)).
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This shows that the diagram (11) is commutative and Claim B follows.
Claim C. The map DHomA(M,Dτ∆(λ),A) is a left (A,R)-monomorphism.
The cokernel of the right (A,R)-monomorphism τ∆(λ),A is A/J ∈ R-proj where J is the image of

τ∆(λ),A, and therefore J is a split heredity ideal. Hence, A/J belongs to F(∆̃op). Thus, D(A/J) belongs

to F(∇̃). So, D = HomR(−, R) induces left (A,R)-exact sequence

0 → D(A/J) → DA
Dτ∆(λ),A−−−−−−→ D(∆(λ)⊗R HomA(∆(λ), A)) → 0. (12)

Applying HomA(M,−) yields the exact sequence

0 → HomA(M,D(A/J)) → HomA(M,DA)
HomA(M,Dτ∆(λ),A)
−−−−−−−−−−−−−→ HomA(M,D(L⊗R HomA(L,A)) → 0,

because Ext1A(M,D(A/J)) = 0. Due to ∆(λ) ∈ A-proj, by Tensor-Hom adjunction, we have

HomA(M,D(∆(λ)⊗R HomA(∆(λ), A)) ≃ HomR(∆(λ)⊗R HomA(∆(λ), A)⊗AM,R)

≃ HomR(∆(λ)⊗R HomA(∆(λ),M), R) ∈ R-proj .

This shows that the right A-homomorphism HomA(M,Dτ∆(λ),A) is an (A,R)-epimorphism. Therefore,
DHomA(M,Dτ∆(λ),A) is a left (A,R)-monomorphism.

Combining Claims A, B and C, we obtain that τ∆(λ),M is a left (A,R)-monomorphism.
Let X be the cokernel of τ∆(λ),M . In particular, X ∈ R-proj and the exact sequence

0 → ∆(λ)⊗R HomA(∆(λ),M)
τ∆(λ),M−−−−−→M → X → 0 (13)

is (A,R)-exact. Recall that Uλ := HomA(∆(λ),M) ∈ R-proj. It remains to show that X ∈ F(∆̃). The
exactness of HomA(∆(λ),−) implies that the map HomA(∆(λ), τ∆(λ),M ) is injective. We claim that it is
also surjective. Let h ∈ HomA(∆(λ),M). Then, for any x ∈ ∆(λ),

h(x) = τ∆(λ),M (x⊗ h) = τ∆(λ),M ◦ (−⊗ h)(x), (14)

where − ⊗ h ∈ HomA(∆(λ),∆(λ) ⊗R HomA(∆(λ),M)). Consequently, HomA(∆(λ), X) = 0 and so
X ∈ A/J-mod∩R-proj (see for example [Cru23, Corollary A.1.13]).

We will proceed by induction on |Λ| to show that every Y ∈ A-mod∩R-proj satisfying Ext1A(Y,∇(λ)) =
0 for every λ ∈ Λ belongs to F(∆̃).

If |Λ| = 1, then A/J-mod is the zero category, and thus X = 0. By (13) M ∈ F(∆̃). Assume that
the result holds for split quasi-hereditary algebras with |Λ| < n for some n > 1. Assume that |Λ| = n.
By Proposition 3.1, HomA(∆(λ) ⊗R Uλ,∇(α)) ≃ HomR(Uλ,HomA(∆(λ),∇(α)) = 0, α ̸= λ. Let α ∈ Λ
distinct of λ. The functor HomA(−,∇(α)) induces the long exact sequence

0 = HomA(∆(λ)⊗R Uλ,∇(α)) → Ext1A(X,∇(α)) → Ext1A(M,∇(α)) = 0. (15)

By induction, X ∈ F(∆̃α̸=λ). By (13) M ∈ F(∆̃). Now assume that Ext1A(∆(µ),M) = 0 for ev-
ery µ ∈ Λ and M ∈ A-mod∩R-proj. Since ∆(µ),M ∈ R-proj, [Cru22a, Lemma 2.15] yields that
Ext1Aop(DM,D∆(µ)) = 0, µ ∈ Λ. As {D∆(µ)} are costandard modules of Aop, we obtain by statement
1. that DM ∈ FAop(D∇̃). Therefore, M ∈ F(∇̃).

So, it follows that F(∆̃) is a resolving subcategory of A-mod∩R-proj, as in the classical case. That
is, F(∆̃) contains all projective A-modules, it is closed under extensions, under direct summands and it
is also closed under kernels of epimorphisms.

By Lemma 3.6, we see that the condition ofM ∈ R-proj cannot be dropped in Theorem 4.1. A trivial
example to check this situation is the split quasi-hereditary algebra R for some commutative Noetherian
ring R with positive global dimension and trivial Picard group. Then, ∇ = ∆ = R, and therefore
F(∆̃) = R-proj while {K ∈ R-mod: Ext1R(R,K) = 0} = R-mod.

Also from the proof of Theorem 4.1 it follows
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Corollary 4.2. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Let λ ∈ Λ be maximal. The map
τ∆(λ),M is an (A,R)-monomorphism for all M ∈ F(∆̃).

Lemma 4.3. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra.

1. Let M ∈ F(∆̃). If Ext1A(M,
⊕
λ∈Λ

∆(λ)) = 0, then M is projective over A.

2. Let N ∈ F(∇̃). If Ext1A(
⊕
λ∈Λ

∇(λ), N) = 0, then N is (A,R)-injective.

Proof. See for example [Rou08, Lemma 4.22].
Consider the (A,R)-exact sequence 0 → N → HomR(A,N) → X → 0. Applying HomA(

⊕
λ∈Λ

∆(λ),−)

yields Ext1A(
⊕
λ∈Λ

∆(λ), X) = 0. By Theorem 4.1, X ∈ F(∇̃). By assumption, Ext1A(X,N) = 0. Hence, N

is an A-summand of HomR(A,N) and consequently, it is (A,R)-injective.

This lemma says that the Ext-projective objects for F(∆̃) belonging to F(∆̃) are exactly the projective
A-modules.

4.1 Characteristic tilting modules

Characteristic tilting modules of finite-dimensional quasi-hereditary algebras are fundamental objects in
order to obtain information about simple modules, and therefore about the structure of A-mod. Their
summands are known as (partial) tilting modules. In the Noetherian case, the (partial) tilting modules
behave very similarly to the classical case. Previous uses of partial tilting modules for split quasi-
hereditary algebras over commutative Noetherian rings can be found in [Rou08], [Has00, III. 4], [Kra17].
Partial tilting modules for SZ(n, d), n ≥ d were studied in [Don93, section 3].

4.1.1 Existence of characteristic tilting modules

Definition 4.4. A module T ∈ A-mod is called (partial) tilting if T ∈ F(∆̃) ∩ F(∇̃).

A starting point to construct them is the following result.

Proposition 4.5. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. The following assertions hold.

(a) Let M ∈ F(∆̃). There is a partial tilting module TM and a monomorphism iM : M → TM such
that coker iM ∈ F(∆).

(b) Let λ ∈ Λ. There are exact sequences and a partial tilting module T (λ)

0 → ∆(λ) → T (λ) → X(λ) → 0 (16)

0 → Y (λ) → T (λ) → ∇(λ) → 0, (17)

where X(λ) ∈ F(∆µ<λ), Y (λ) ∈ F(∇̃µ<λ).

Proof. We follow the same argument given in [Rou08, Proposition 4.26]. There is a subtle difference,
here, we argue that T can be constructed using only free modules in the filtration. Let M ∈ F(∆̃). Fix
Λ → {1, . . . , t}, λ 7→ iλ an increasing bijection and set ∆iλ := ∆(λ). We construct by induction an object
TM with a filtration

0 = Tn+1 ⊂M = Tn ⊂ · · · ⊂ T0 = TM , Ti−1/Ti ≃ ∆i ⊗R Ui, Ui ∈ -free . (18)

The case n = 1 follows from Ext1A(∆1,∆1) = 0 and the fact that ∆1⊗RU1 is a direct sum of copies of ∆1

for any U1 ∈ R-proj. Assume n > 1. Assume Ti is defined for some i, 2 ≤ i ≤ n. We shall construct Ti−1.
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Let Ui be a free R-module defined by the following map Ui
π−→ Ext1A(∆i, Ti) being surjective. Consider

the extension

0 → Ti → X → ∆i ⊗R Ui → 0 (19)

corresponding to π via the isomorphism HomR(Ui,Ext
1
A(∆i, Ti)) → Ext1A(∆i⊗R Ui, Ti) (see for example

[Cru23, Lemma B.0.2]). In particular, Ext1A(∆i, X) = 0. Define Ti−1 = X. Since Ti ∈ F(∆j>i) we obtain
that Ti−1 ∈ F(∆j≥i). On the other hand, for j > i, applying HomA(∆j ,−) to (19) yields

HomA(∆j ,∆i ⊗R Ui) → Ext1A(∆j , Ti) → Ext1A(∆j , X) → Ext1A(∆j ,∆i ⊗R Ui) = 0. (20)

We can assume by induction that Ext1A(∆j , Ti) = 0 for j > i. Hence, Ext1A(∆j , Ti−1) = 0 for j > i.
Hence, Ext1A(∆j , Ti−1) = 0 for all j ≥ i. Hence, by induction, we obtain a module TM ∈ F(∆) with
Ext1A(∆j , TM ) = 0 for all j and satisfying TM/M ∈ F(∆). By Theorem 4.1, TM is partial tilting.

Now consider M = ∆(λ) = ∆i = Ti. Notice that we can start the construction of T at i since for
j > i we have Ext1A(∆j ,∆i) = 0. Applying the previous construction we have a filtration

0 ⊂ ∆i = Ti ⊂ Ti−1 ⊂ · · · ⊂ T0 = T (i), Tj−1/Tj ≃ ∆j ⊗R Fj , Fj ∈ R-free (21)

with T (i) being a partial tilting module. Since T (i) ∈ F(∇̃) there exists a filtration 0 = I0 ⊂ I1 ⊂ · · · ⊂
In = T (i) with Ij/Ij−1 ≃ ∇j ⊗R Uj , 1 ≤ j ≤ n. Consider the exact sequences

0 → Ij−1 → Ij → ∇j ⊗R Uj → 0, 1 ≤ j ≤ n. (22)

It is enough to show that Uj = 0 for j > i and Ui ≃ R. Let 1 ≤ k ≤ n. Applying the functor
HomA(∆k,−) we obtain the exact sequences

0 → HomA(∆k, Ij−1) → HomA(∆k, Ij) → HomA(∆k,∇j ⊗R Uj) → Ext1A(∆k, Ij−1) = 0. (23)

Hence, for k ̸= j we obtain

HomA(∆k, Ij−1) ≃ HomA(∆k, Ij). (24)

For k = j, the following is exact

0 → HomA(∆j , Ij−1) → HomA(∆j , Ij) → Uj → 0, 1 ≤ j ≤ n. (25)

Combining (24) with (25) we obtain the exact sequence

0 → HomA(∆k,∇1 ⊗R U1) → HomA(∆k, T (i)) → Uk → 0, k > 1. (26)

If k > i then since T (i) ∈ F(∆j≤i) we obtain HomA(∆k, T (i)) = 0. By (26), Uj = 0 for j > i.
If i = 1, it follows by (22) and (24)

U1 ≃ HomA(∆1, I1) ≃ HomA(∆1, In) = HomA(∆1, T (1)) = HomA(∆1,∆1) ≃ R. (27)

Assume i > 1. By (26), Ui = HomA(∆i, T (i)). Finally, observe that HomA(∆i, T (i)) = R. In fact, using
the exact sequence constructed 0 → ∆i → T (i) → X(i) → 0, every morphism in HomA(∆i, T (i)) factors
through ∆i since X(i) ∈ F(∆j<i).

We say that T =
⊕
λ∈Λ

T (λ) is a characteristic tilting module of (A, {∆(λ)λ∈Λ}) (or just of A

when there is no confusion on the underlying quasi-hereditary structure of A), if each T (λ) is a partial
tilting with exact sequences as in Theorem 4.5, where we can relax the conditions on X(λ) and Y (λ) to
X(λ) ∈ F(∆̃µ<λ) and Y (λ) ∈ F(∇̃µ<λ). As we will see, a characteristic tilting module is a full tilting
module justifying the modules T (λ) being called (partial) tilting.

In practice, the short exact sequences (4.5) provide a way for determining the (partial) tilting modules.
But, as we will see next, these short exact sequences are also approximations. Recall that given a
subcategory of A-mod, C, and a module M ∈ A-mod, a left C-approximation of M (if it exists) is a
map f : M → N so that the induced map HomA(f, C) is surjective for any C ∈ C with N ∈ C.
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Proposition 4.6. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Let λ ∈ Λ.
The homomorphism ∆(λ) ↪→ T (λ) constructed in Proposition 4.5 is an injective left F(∇̃)-approximation

of ∆(λ). The homomorphism T (λ) → ∇(λ) constructed in Proposition 4.5 is a surjective right F(∆̃)-
approximation of ∇(λ).

Proof. Let X ∈ F(∇̃). Applying HomA(−, X) to (16) yields the exact sequence

0 → HomA(X(λ), X) → HomA(T (λ), X) → HomA(∆(λ), X) → Ext1A(X(λ), X). (28)

By Lemma 3.6, Ext1A(X(λ), X) = 0 since X(λ) ∈ F(∆̃). Thus, HomA(T (λ), X) → HomA(∆(λ), X) is
surjective.

Let Y ∈ F(∆̃). Applying HomA(Y,−) to (17) yields that the map HomA(Y, T (λ)) → HomA(Y,∇(λ))
is surjective.

There is naturally a version of Corollary 3.2 and Proposition 3.1 for partial tilting modules.

Lemma 4.7. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra and let T be a partial tilting module.
Then, DT is a partial tilting module in the split highest weight category (Aop, {D∇(λ)λ∈Λ}). Moreover,
if T is a characteristic tilting module over A, then DT is a characteristic tilting module over Aop.

Proof. By Theorem 4.1, DT ∈ F(D∆̃) ∩ F(D∇̃). Assume that T is a characteristic tilting module. The
exact sequences (16) and (17) are (A,R)-exact since X(λ),∇(λ) ∈ R-proj. Applying D, it follows that
DT is a characteristic tilting module over Aop.

4.1.2 Characterizations of F(∆̃) and F(∇̃) in terms of characteristic tilting modules

Let C be a subcategory of A-mod. In the following, we will denote by Ĉ the subcategory of A-mod whose
modules M fit into an exact sequence 0 → Ct → Ct−1 → · · · → C0 → M → 0 with all Ci ∈ C. Dually,

we will consider the subcategory qC.

Lemma 4.8. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Assume that T is a characteristic

tilting module. Let X,Z ∈ âddT ∩ R-proj. Assume there is an exact sequence 0 → X
k−→ Y

π−→ Z → 0.

Then, Y ∈ âddT ∩R-proj.

Proof. Consider the following diagram with exact rows and columns

0 X Y Z 0

0 T ′
0 T ′

0

⊕
T ′′
0 T ′′

0 0

K ′
0 K ′′

0

k π

p′0

k0 π0

p′′0

with T ′
0, T

′′
0 ∈ F(∆̃) ∩ F(∇̃). Applying HomA(T

′′
0 ,−) to the top row yields

0 → HomA(T
′′
0 , X) → HomA(T

′′
0 , Y ) → HomA(T

′′
0 , Z) → Ext1A(T

′′
0 , X) = 0. (29)

This is an immediate consequence of T ′′
0 ∈ F(∆̃) and X ∈ F(∇̃). Hence, the map p′′0 lifts to f ∈

HomA(T
′′
0 , Y ) such that p′′0 = π ◦ f . Now consider g : T ′

0

⊕
T ′′
0 → Y , given by g(x, y) = k ◦ p′0(x) +

f(y), (x, y) ∈ T ′
0

⊕
T ′′
0 . Then, for (x, y) ∈ T ′

0

⊕
T ′′
0 ,

g ◦ k0(x) = g(x, 0) = k ◦ p′0(x) (30)
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π ◦ g(x, y) = π(k ◦ p′0(x) + f(y)) = π ◦ f(y) = p′′0(y) = p′′0 ◦ π0(x, y). (31)

Hence, g makes the previous diagram commutative. By Snake Lemma, g is surjective. Define K0 = ker g.
k0|K′

0
: K ′

0 → K0 is well defined and it is clearly a monomorphism since g ◦ k0(x) = k ◦ p′0(x) = k(0) =
0, x ∈ K0. Now π0|K0

: K0 → K ′′
0 is well defined since p′′0 ◦ π0|K0

(x, y) = p′′0 ◦ π0(x, y) = π ◦ g(x, y) =
0, (x, y) ∈ K0. Therefore, we have the commutative diagram with exact columns and the two top rows
exact,

0 X Y Z 0

0 T ′
0 T ′

0

⊕
T ′′
0 T ′′

0 0

0 K ′
0 K0 K ′′

0 0

k π

p′0

k0

g

π0

p′′0

k0|K′
0

π0|K0

.

Let y ∈ K ′′
0 . Then,π ◦ g(0, y) = π ◦ f(y) = p′′0(y) = 0.Thus, g(0, y) = k(p′0(t)) = g ◦ k0(t) for some t ∈ T ′

0.
Hence, (0, y) − k0(t) ∈ K0 and its image under π0 is y. Thus, π0|K0 is surjective. Let (x, y) ∈ kerπ|K0 .
Then, (x, y) ∈ K0 ∩im k0, so there exists z ∈ T ′

0 such that k0(z) = (x, y). Thus, k ◦ p′0(z) = g ◦ k0(z) = 0,
and consequently p′0(z) = 0. Thus, z ∈ K ′

0. So, the bottom row is also exact.
Now continue with the construction with the bottom row. Note that both K ′

0,K
′′
0 have partial tilting

resolutions by construction. After a finite number of steps either we must proceed with an exact sequence

0 → K ′
t → Kt → K ′′

t → 0, (32)

with K ′
t ∈addT,K ′′

t ∈ F(∇̃) or T ′′
t+1 = K ′′

t ∈addT,K ′
t ∈ F(∇̃). In the first case, proceed one more step

and we end up with Kt+1 ≃ K ′′
t+1. So,

0 → T ′′
r → · · · → T ′′

t+2 → T ′
t+1

⊕
T ′′
t+1 → · · · → T ′

0

⊕
T ′′
0 → Y → 0 (33)

is a partial tilting resolution for Y . In the second case, Ext1A(K
′′
t ,K

′
t) = 0, so it splits, that is Kt ≃

K ′′
t

⊕
K ′
t. Hence

0 → T ′
r → · · · → T ′

t+2 → T ′
t+1

⊕
T ′′
t+1 → · · · → T ′

0

⊕
T ′′
0 → Y → 0 (34)

is a partial tilting resolution for Y . The assertion that Y ∈ R-proj is clear.

Theorem 4.9. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Assume that T is a characteristic
tilting module. The following assertions hold true.

(a) F(∆̃) = {M ∈ A-mod∩R-proj : Exti>0
A (M,T ) = 0}.

(b) F(∆̃) = addT .

(c) F(∇̃) = {N ∈ A-mod∩R-proj : Exti>0
A (T,N) = 0}.

(d) F(∇̃) =âddT ∩R-proj.

(e) addT = F(∆̃) ∩ F(∇̃).

Proof. Let M ∈ F(∆̃). As T ∈ F(∇̃) then Exti>0
A (M,T ) = 0 by Lemma 3.6. Conversely, assume

that Exti>0
A (M,T ) = 0. Then,

∏
λ∈Λ Exti>0

A (M,T (λ)) = 0 and by consequence for each λ ∈ Λ,

Exti>0
A (M,T (λ)) = 0. We claim that Exti>0

A (M,∇(λ)) = 0 for every λ ∈ Λ. If λ is minimal, then
T (λ) = ∇(λ), so there is nothing to show. Assume that, for all µ < λ, Exti>0

A (M,∇(µ)) = 0. Then,
ExtiA(M,X) = 0 for every X ∈ F(∇̃µ<λ), i > 0. Applying HomA(M,−) to (17) we obtain that
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Ext1A(M,∇(λ)) ≃ Ext2A(M,Y (λ)) = 0. By induction, Ext1A(M,∇(λ)) = 0 for all λ ∈ Λ. By Propo-
sition 4.1, M ∈ F(∆̃). Hence, (a) follows. By a symmetric argument, we obtain statement (c).

We will now prove (d). Let X ∈ âddT ∩ R-proj. So X has a finite resolution by addT which splits
as sequence of R-modules. As F(∇̃) is closed under quotients of (A,R)-monomorphisms it follows that
X ∈ F(∇̃). Now we will show that each costandard module ∇(µ) has a partial tilting resolution. If λ is
minimal, then ∆(λ) = T (λ) = ∇(λ). So, there is nothing to prove in such a case. Assume by induction
that each ∇(µ) with µ < λ has a resolution by partial tilting modules. By Lemma 4.8, every module in
F(∇µ<λ) has a finite partial tilting resolution. Hence Y (λ), as in Proposition 4.5, has a finite partial
tilting resolution. Now using the exact sequence (17) and the partial tilting resolution for Y (λ), it follows
that ∇(λ) has a finite partial tilting resolution. Applying Lemma 4.8, it follows that any module in F(∇̃)
has a partial tilting resolution. So, (d) follows.

We will now proceed to prove (b). LetM ∈ addT . Since F(∆̃) is closed under kernels of epimorphisms
it follows that M ∈ F(∆̃). Conversely, assume that M ∈ F(∆̃). Then DM ∈ F(D∆̃). By (d), Corollary

3.2 and Lemma 4.7, DM ∈ ̂addDT . SinceM ∈ R-proj, M ≃ DDM ∈ addDDT = addT . So, (b) follows.
It remains to prove assertion (e). The inclusionaddT ⊂ F(∆̃)∩F(∇̃) was established in Proposition

4.5. Let X ∈ F(∆̃) ∩ F(∇̃). By (d), there exists an (A,R)-exact sequence 0 → L → T0 → X → 0 with
L ∈ F(∇̃) and T0 ∈addT . Further, since F(∆̃) is closed under kernels of epimorphisms L also belongs to
F(∆̃). In particular, Ext1A(X,L) = 0 and therefore T0 ≃ X ⊕ L. Applying HomA(T,−) we obtain that
HomA(T,X) is projective over EndA(T )

op. Using projectivization together with T⊗EndA(T )opHomA(T,−)
being left exact on T1 → T0 → X → 0 (given by (d)) we obtain by diagram chasing that X ∈addT .

We should remark that a characteristic tilting module T is in fact a full generalized tilting module,
that is, it has finite projective dimension over A, it has no self-extensions, that is, Exti>0

A (T, T ) = 0 and
by Theorem 4.9(b) there exists an exact sequence 0 → A→ T0 → · · · → Tr → 0 where Ti ∈addT for all
0 ≤ i ≤ r for some r ∈ N. In the integral setup, characteristic tilting modules are not necessarily unique
but they are unique up to ”multiplicities”.

Corollary 4.10. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Assume there are modules T (λ)
and Q(λ), λ ∈ Λ with exact sequences

0 → ∆(λ) → T (λ) → X(λ) → 0

0 → Y (λ) → T (λ) → ∇(λ) → 0

0 → ∆(λ) → Q(λ) → X ′(λ) → 0

0 → Y ′(λ) → Q(λ) → ∇(λ) → 0

where X(λ), X ′(λ) ∈ F(∆̃µ<λ) and Y (λ), Y ′(λ) ∈ F(∇̃µ<λ). Let T =
⊕
λ∈Λ

T (λ), Q =
⊕
λ∈Λ

Q(λ). Then,

addT =addQ. Further, EndA(T )
op and EndA(Q)op are Morita equivalent.

Proof. By assumption, both Q and T are characteristic tilting modules of (A, {∆(λ)λ∈Λ}). By Theo-
rem 4.9(e), addT = F(∆̃) ∩ F(∇̃) = addQ. By projectivization, EndA(T )

op-proj ≃ EndA(Q)op-proj.
Therefore, EndA(T )

op and EndA(Q)op are Morita equivalent.

5 Change of rings and filtrations of Hom(F(∆̃),F(∇̃))

We will see now that costandard modules and partial tilting modules behave well under change of ground
rings.

Proposition 5.1. Let S be a commutative R-algebra and a Noetherian ring. Let (A, {∆(λ)λ∈Λ}) be a
split quasi-hereditary algebra. Then, the following assertions hold.
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(a) (S ⊗R A, {S ⊗R ∆(λ)λ∈Λ}) has costandard modules S ⊗R ∇(λ) ⊗S U(λ) for some U(λ) ∈ Pic(S).
Moreover, if S is flat over R, then the costandard modules can be written in the form S ⊗R ∇(λ).

(b) Let T =
⊕

λ∈Λ T (λ) be a characteristic tilting module of A. Assume that S is flat over R or that
S has a trivial Picard group then S ⊗R T (λ) is a partial tilting module (it satisfies (16) and (17))
for S ⊗R A and S ⊗R T is a characteristic tilting module.

Proof. By Proposition 3.1, (Aop, {D∇(λ)λ∈Λ}) is a split quasi-hereditary algebra. By [Rou08, Proposition
4.14], (S ⊗R Aop, {S ⊗R D∇(λ)λ∈Λ}) is a split quasi-hereditary algebra. Now note that (S ⊗R A)op =
S ⊗R Aop, since S is a commutative ring. Moreover,

S ⊗R D∇(λ) ≃ HomS⊗RR(S ⊗R ∇(λ), S ⊗R R) ≃ HomS(S ⊗R ∇(λ), S). (35)

So, S ⊗R ∇(λ) ⊗S Uλ, for a fixed Uλ ∈ Pic(S), is a costandard module of S ⊗R A by Proposition 3.1.
Now assume that S is a flat R-algebra. Then,

ExtjS⊗RA
(S ⊗R ∆(λ), S ⊗R ∇(β)) ≃ S ⊗R ExtjA(∆(λ),∇(β)) ≃

{
S ⊗R R if λ = β, i = 0

0 otherwise
. (36)

By the uniqueness, S ⊗R ∇(λ) are costandard modules of S ⊗R A.
Assume that either S is an R-flat or S has trivial Picard group. Then, by (b) the costandard modules

of S ⊗R A are of the form S ⊗R∇(λ). Since the exact sequences given by filtrations are all (A,R)-exact,
the functor S⊗R− is exact on the exact sequences of Proposition 4.5. Therefore, S⊗RT is a characteristic
tilting module for S ⊗R A.

Remark 5.2. We cannot expect that the isomorphism T (λ)(m) ≃ T(m)(λ) holds in this generality, where
T(m)(λ) is a partial tilting indecomposable module of A(m) for m a maximal ideal of R. For example, the
rank of (Ui) at each localization m (m a maximal ideal of R) might not be constant for some i.

An analogue of the following result in a slightly different setup can be found in [Kra17, Proposition
2.11].

Proposition 5.3. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Suppose that M ∈ F(∆̃) and
N ∈ F(∇̃). Then, the following assertions hold.

(a) The functor −⊗AM : F(D∇̃) → R-proj is a well-defined exact functor.

(b) The functor DN ⊗A − : F(∆̃) → R-proj is a well-defined exact functor.

Proof. It is enough to show that DN⊗AM ∈ R-proj and TorAi>0(DN,M) = 0. Let m be a maximal ideal
of R. LetM• be a deleted projective (left) A-resolution ofM . SinceM ∈ R-proj, M•(m) = R(m)⊗RM•

is a deleted projective A(m)-resolution of M(m) for every maximal ideal m in R. Further, each module
in the complex DN ⊗A M• belongs to addRDN . So, the complex DN ⊗A M• is a flat chain complex.
Consider the Künneth spectral sequence for chain complexes (see for example [Wei03, Theorem 5.6.4])

E2
p,q = TorRp (Tor

A
q (DN,M), R(m)) =⇒ Hp+q(DN ⊗AM• ⊗R R(m)) = Tor

A(m)
p+q (DN(m),M(m)).

Observe that

Tor
A(m)
i>0 (DN(m),M(m)) = Tor

A(m)
i>0 (D(m)N(m),M(m)) = Hi>0(D(m)N(m)⊗A(m) M

•(m)) (37)

≃ Hi>0(D(m) HomA(m)(M
•(m), N(m))) ≃ D(m)H

i>0(HomA(m)(M
•(m), N(m)))

≃ D(m) Ext
i>0
A(m)(M(m), N(m)) = 0. (38)

The last equality follows from Proposition 5.7 and Lemma 3.6.
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By [Cru22a, Lemma A.3], for each maximal ideal m in R, we obtain that

0 = E2
1,0 = TorR1 (DN ⊗AM,R(m)). (39)

Therefore, DN ⊗A M ∈ R-proj. Moreover, E2
i,0 = 0 for all i > 0. Again, by [Cru22a, Lemma A.3], it

follows that

TorA1 (DN,M)(m) = E2
0,1 ≃ E2

2,0 = 0. (40)

Thus, TorA1 (DN,M) = 0 and consequently E2
i,1 = 0 for all i ≥ 0. We can proceed by induction on q to

show that E2
i,j = 0 for all i ≥ 0, 1 ≤ j ≤ q. In fact, assume that E2

i,j = 0 for all i ≥ 0, 1 ≤ j ≤ q for a
given q. By [Cru22a, Lemma A.4], there exists an exact sequence

0 = E2
q+2,0 → E2

0,q+1 → Hq+1 = 0. (41)

So, Torq+1(DN,M)(m) = 0. Hence, Torq+1(DN,M) = 0. Therefore, E2
i,q+1 = 0 for all i ≥ 0. We showed

that E2
i,j = 0 for all i ≥ 0 and j ≥ 1. This means that TorAq>0(DN,M) = 0.

As a direct consequence of Proposition 5.3.

Corollary 5.4. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. LetM ∈ F(∆̃) and let N ∈ F(∇̃).
Then, HomA(M,N) ∈ R-proj.

We can say even more about HomA(M,N). In fact, applying the same idea used in [KSX01] to
construct a filtration to EndA(T ), for T we can construct a filtration for HomA(M,N).

Proposition 5.5. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈ F(∆̃), L ∈ F(∇̃). Let
Λ → {1, . . . , t}, λ 7→ iλ be an increasing bijection and set ∆iλ := ∆(λ). So, there exists Ui, Si ∈ R-proj
such that

0 =Mn+1 ⊂Mn ⊂ · · · ⊂M1 =M with Mi/Mi+1 ≃ ∆i ⊗R Ui
0 = Ln+1 ⊂ Ln ⊂ · · · ⊂ L1 = L with Li/Li+1 ≃ ∇n−i+1 ⊗R Sn−i+1, i = 1, . . . , n.

Then, HomA(M,L) has a filtration

0 = Xn+1 ⊂ Xn ⊂ Xn−1 ⊂ · · · ⊂ X1 = X = HomA(M,N),

Xi = HomA(M/Mn−i+2, Li) = HomA/Jn−i+2
(M/Mn−i+2, Li), Xi/Xi+1 ≃ HomR(Un−i+1, Sn−i+1).

Proof. We will proceed by induction on n = |Λ|. Assume n = 1. Then,M ≃ ∆1⊗RU1 and L ≃ ∇1⊗RS1.
Then,

HomA(M,N) = HomA(∆1 ⊗R U1,∇1 ⊗R S1) ≃ HomR(U1,HomA(∆1,∇1 ⊗R S1)) (42)

≃ HomR(U1,HomA(∆1,∇1)⊗R S1) ≃ HomR(U1, S1). (43)

So, the filtration 0 ⊂ HomR(U1, S1) = X1 is the desired one. Assume the result holds for n− 1. Consider
the short exact sequences

0 → ∆n ⊗R Un
kM−−→M

πM−−→M/Mn → 0 (44)

0 → L2
kL−−→ L

πL−−→ ∇n ⊗R Sn → 0. (45)

Applying the functor HomA(M,−) to (45) gives

0 → HomA(M,L2)
HomA(M,kL)−−−−−−−−−→ HomA(M,L)

HomA(M,πL)−−−−−−−−−→ HomA(M,∇n ⊗R Sn) → Ext1A(M,L2) = 0.
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Applying HomA(−, L) to (44) gives

HomA(M/Mn, L)
HomA(πM ,L)
↪−−−−−−−−→ HomA(M,L)

HomA(kM ,L)−−−−−−−−→ HomA(∆n ⊗R Un, L) → Ext1A(M/Mn, L) = 0.

Applying the functor HomA(−, L2) to (44) we get the following exact sequence

0 HomA(M/Mn, L2) HomA(M,L2) HomA(∆n ⊗R Un, L2) 0 = Ext1A(M/Mn, L2).
HomA(πM ,L2) HomA(kM ,L2)

Since L2 ∈ F(∇i<n) we obtain HomA(∆n ⊗R Un, L2) = 0. Hence, HomA(πM , L2) is an isomorphism.
Applying the functor HomA(−,∇n ⊗R Sn) to (44) yields the exact sequence

HomA(M/Mn,∆n ⊗R Sn) HomA(M,∆n ⊗R Un) HomA(∆n ⊗R Un,∇n ⊗R Sn)
HomA(kM ,∆n⊗RUn)

.

Since M/Mn ∈ F(∆̃i<n) we obtain HomA(M/Mn,∇n ⊗R Sn) = 0. Hence, HomA(kM ,∆n ⊗R Un) is an
isomorphism. Therefore, we have an exact sequence

HomA(M/Mn, L2) HomA(M,L) HomA(∆n ⊗R Un,∇n ⊗R Sn).
HomA(M,kL)◦HomA(πM ,L2) HomA(kM ,∆n⊗RUn)◦HomA(M,πL)

Furthermore,

HomA(∆n ⊗R Un,∇n ⊗R Sn) ≃ HomR(Un,HomA(∆n,∇n ⊗R Sn)) ≃ HomR(Un,HomA(∆n,∇n)⊗R Sn)
≃ HomR(Un, Sn). (46)

Fix Jn = im τ∆n
. Because of M/Mn ∈ F(∆̃i<n) and L2 ∈ F(∇̃i<n), we have HomA(M/Mn, L2) =

HomA/Jn(M/Mn, L2). Therefore, X/HomA/Jn(M/Mn, L2) ≃ HomR(Un, Sn). By induction,
HomA/Jn(M/Mn, L2) admits a filtration 0 ⊂ Xn ⊂ Xn−1 ⊂ · · · ⊂ X2 = HomA(M/Mn, L2), with
Xi ≃ HomA/Jn/Jn−i+2/Jn(M/Mn−i+2, Li) ≃ HomA/Jn−i+2

(M/Mn−i+2, Li), i = 2, . . . n. Thus, 0 ⊂ Xn ⊂
Xn−1 ⊂ · · · ⊂ X2 ⊂ X is the desired filtration.

The following result has been observed in the literature several times in particular cases (see for
example Lemma 4.2 of [DPS98]).

Corollary 5.6. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. LetM ∈ F(∆̃) and let N ∈ F(∇̃).
Let Q be a commutative R-algebra and commutative Noetherian ring. Then,

Q⊗R HomA(M,N) ≃ HomQ⊗RA(Q⊗RM,Q⊗R N).

Proof. It follows immediately from Proposition 5.3. However, the following argument using Proposition
5.5 is better equipped for some relevant cases. We shall proceed by induction on n = |Λ|. Assume n = 1.
Then, HomA(M,N) ≃ HomR(U1, S1). So,

Q⊗R HomA(M,N) ≃ Q⊗R HomR(U1, S1) ≃ HomQ⊗RR(Q⊗R U1, Q⊗R S1) (47)

≃ HomQ⊗RA(Q⊗R ∆1 ⊗Q⊗RR Q⊗R U1, Q⊗R ∇1 ⊗Q⊗RR Q⊗R S1) (48)

≃ HomQ⊗RA(Q⊗RM,Q⊗R N). (49)

Assume that the result holds for n− 1. Consider A with |Λ| = n. Consider the exact sequence given by
the filtration of HomA(M,N):

0 → HomA/J(M/Mn, L2) → HomA(M,L) → HomR(Un, Sn) → 0. (50)

Since HomR(Un, Sn) ∈ R-proj, (50) is (A,R)-exact. We will denote by X(Q) the tensor product Q⊗RX.
Applying Q⊗R − we get the following commutative diagram with exact rows
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Q⊗R HomA/J(M/Mn, L2) Q⊗R HomA(M,L) Q⊗R HomA(∆n ⊗R Un,∇n ⊗R Sn)

HomA/J(Q)(M/Mn(Q), L2(Q)) HomA(Q)(M(Q), L2(Q)) HomA(Q)(∆n(Q)⊗Q Un(Q),∇n(Q)⊗Q Sn(Q))

α1 α α2 .

Note that the bottom row is exact since we use the same exact sequences given by filtrations of
M(Q) ∈ F(∆(Q)) and L(Q) ∈ F(∇(Q)) in view of Proposition 4.14 of [Rou08] (see also [Cru23, Propo-
sition 3.1.1]). This is admissible because all the modules involved in the filtrations are projective over
R. So, the functor Q ⊗R − preserves the given filtrations. By induction, α1 is an isomorphism. Since
∆n ⊗R Un ∈ A-proj, α2 is an isomorphism. By Snake Lemma, α is an isomorphism.

Proposition 5.7. [Rou08, Proposition 4.30] Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Let
M ∈ A-mod. Then, the following assertions hold.

(a) M ∈ F(∆̃) if and only if M(m) ∈ F(∆(m)) for all maximal ideals m of R and M ∈ R-proj.

(b) M ∈ F(∇̃) if and only if M(m) ∈ F(∇(m)) for all maximal ideals m of R and M ∈ R-proj.

(c) Let T be a characteristic tilting module. M ∈addT if and only if M(m) ∈addT (m) for all maximal
ideals m of R and M ∈ R-proj.

Proof. Assume that M ∈ F(∆̃). The functor R(m)⊗R − : A-mod → A(m)-mod is exact on filtrations of
M and therefore M(m) ∈ F(∆(m)).

Conversely, let M ∈ A-mod∩R-proj such that M(m) ∈ F(∆(m)) for every maximal m in R. Let
N ∈ F(∇̃). In particular, N(m) ∈ F(∇(m)). The projectivity ofM as R-module implies that R(m)⊗R−
sends a deleted projective A-resolution of M to a deleted projective A(m)-resolution of M(m), m ∈
MaxSpecR. Using the Künneth spectral sequence for chain complexes and the argument developed in
the proof of Proposition 5.3 we obtain that TorAi>0(DN,M) = 0 and DN ⊗AM ∈ R-proj. This implies
that Exti>0

A (M,N) = 0. In fact, DN ⊗A M• is an exact sequence, where M• denotes a projective
resolution of M . Since DN ⊗A M ∈ R-proj applying D we obtain that HomA(M

•, DDN) is an exact
sequence. By Theorem 4.1, (a) follows.

Let N ∈ F(∇̃). Then, again since the functor R(m)⊗R− : A-mod → A(m)-mod is exact on filtrations
of N , N(m) ∈ F(∇(m)), m ∈ MaxSpecR. Conversely, assume that N ∈ R-proj and N(m) ∈ F(∇(m))
for every maximal ideal m in R. Then, DN(m) ≃ HomR(m)(N(m), R(m)) ∈ F(∆Aop(m)). By (a),

DN ∈ F(∆̃Aop) hence N ∈ F(∇̃). So, (b) follows.
Applying (a) and (b) to Theorem 4.9, (c) follows.

Proposition 5.8. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Let M ∈ A-mod. Then, the
following assertions hold.

1. If M ∈ F(∆̃) and M(m) ≃ ∆(λ)(m) for some λ ∈ Λ for every maximal ideal m of R, then
M ≃ ∆(λ)⊗ F for some F ∈ Pic(R).

2. If M ∈ F(∇̃) and M(m) ≃ ∇(λ)(m) for some λ ∈ Λ for every maximal ideal m of R, then
M ≃ ∇(λ)⊗ F for some F ∈ Pic(R).

Proof. Let Λ → {1, . . . , t}, λ 7→ iλ be an increasing bijection and set ∆iλ := ∆(λ). Since M ∈ F(∆̃)
there is a filtration

0 =Mn+1 ⊂Mn ⊂ · · · ⊂M1 =M, Mi/Mi+1 ≃ ∆i ⊗R Ui, Ui ∈ R-proj . (51)

By Proposition 5.5, HomA(M,∇i) ≃ HomA(M/Mi+1,∇i) ≃ HomR(Ui, R) = DUi. Let µ ∈ Λ \ {λ}.
Then, HomA(M,∇(µ))(m) ≃ HomA(m)(M(m),∇(µ)(m)) ≃ HomA(m)(∆(λ)(m),∇(µ)(m)) = 0 for every
maximal ideal m in R. Hence, DU(µ) ≃ HomA(M,∇(µ)) = 0, and thus M ≃ ∆(λ)⊗R U(λ) since each
U(µ) ∈ R-proj. Observe that ∆(λ) ≃M(m) ≃ ∆(λ)(m)⊗R(m)U(λ)(m) for every m ∈ MaxSpecR. Hence,
U(λ)(m) ≃ R(m). Since U(λ) ∈ R-proj, Remark 2.1 yields that U(λ) ∈ Pic(R).
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Using the base change property presented in Corollary 5.4, we can improve Proposition 5.1 by seeing
that the invertible module must be the regular module itself.

Proposition 5.9. Let S be a commutative R-algebra and a Noetherian ring. Let (A, {∆(λ)λ∈Λ}) be a
split quasi-hereditary algebra. Then, the following assertions hold.

(a) The costandard modules of (S ⊗R A, {S ⊗R ∆(λ)λ∈Λ}) are of the form S ⊗R ∇(λ) with λ ∈ Λ.

(b) Let T =
⊕

λ∈Λ T (λ) be a characteristic tilting module of A. Then S ⊗R T (λ) satisfies (16) and
(17)) over S ⊗R A and S ⊗R T is a characteristic tilting module.

Proof. By Proposition 5.1, for each λ ∈ Λ we can obtain S ≃ HomS⊗RA(S⊗R∆(λ), S⊗R∇(λ)⊗RU(λ)) ≃
HomS⊗RA(S ⊗R ∆(λ), S ⊗R ∇(λ))⊗S Uλ. By Corollary 5.4, the latter is isomorphic to

S ⊗R HomA(∆(λ),∇(λ))⊗S U(λ) ≃ (S ⊗R R)⊗S U(λ) ≃ S ⊗S U(λ) ≃ U(λ).

So, (a) follows. Using (a) and the same argument as in Proposition 5.1, (b) is clear.

6 F(∆̃) determines all equivalences of split highest weight cate-
gories

The full subcategory of A-mod F(∆̃) completely determines the split quasi-hereditary algebra A. This
result over finite-dimensional algebras appears in [DR92] and in [DK94].

Theorem 6.1. Let (A-mod, {∆(λ)λ∈Λ}) and (B-mod, {Ω(θ)θ∈Θ}) be two split highest weight categories.
There exists an exact equivalence between F(∆̃) and F(Ω̃) if and only if A-mod and B-mod are equivalent
as split highest weight categories in the sense of [Rou08].

Proof. Assume that A-mod and B-mod are equivalent as split highest weight categories. By definition,
there exists an exact equivalence functor F : A-mod → B-mod satisfying F∆(λ) ≃ Ω(ϕ(λ))⊗RUλ, λ ∈ Λ,
Uλ ∈ Pic(R). It follows that the restriction of F to F(∆̃) has image in F(Ω̃) which is again fully faithful
and exact.

Conversely, let H : F(∆̃) → F(Ω̃) and G : F(Ω̃) → F(∆̃) be exact equivalences. We claim that H
sends projective A-modules to projective B-modules. Let P ∈ A-proj. Let 0 → Ωθ → X → HP → 0 be
a short exact sequence for some θ ∈ Θ and denote it by ρ. By assumption, HP ∈ F(Ω̃) and so F(Ω̃)
being closed under extensions implies that ρ is an exact sequence of modules belonging to F(Ω̃). Since
GHP ≃ P applying G to ρ yields a split exact sequence over A. Hence the exact sequence HGρ is also
split and being equivalent to ρ we obtain that ρ splits over B. This means that Ext1B(HP,Ω(θ)) = 0 for
all θ ∈ Θ. By Theorem 4.3, HP ∈ B-proj. In particular, HA ∈ B-proj. Symmetrically, GQ ∈ A-proj for
all Q ∈ B-proj, and in particular, GB ∈ A-proj. Therefore GB

⊕
K ≃ As for someK ∈ A-mod and some

s ∈ N. Applying H yields that B
⊕
HK ≃ HAs. Therefore, HA is a B-progenerator. By Morita theory,

the functor HomB(HA,−) : B-mod → A-mod is an exact equivalence of categories. In particular, this
functor lifts G. In fact, for any X ∈ F(Ω̃), HomB(HA,X) ≃ HomA(GHA,GX) ≃ HomA(A,GX) ≃ GX.
By applying R(m) ⊗R − it follows that the cardinality of Λ and of Θ coincide with the number of non-
isomorphic simple A(m)-modules.

Let Λ → {1, . . . , |Λ|}, λ 7→ iλ be an increasing bijection and set ∆iλ := ∆(λ). We now claim that
for each t = 1, . . . , |Λ| there exists θt ∈ Θ and Ut ∈ R-proj so that H∆t ≃ Ω(θt) ⊗R Ut. We shall
proceed by reverse induction on t. Assume the result is known for some t ∈ N with 1 < t < |Λ|.
First we must observe that H∆t−1 ∈ F(Ω̃Θ\{θ|Λ|,...,θt}). In fact, assume that l is the highest element
in {t, . . . , |Λ|} so that Ω(θl) appears in a filtration of H∆t−1. Then there exists an exact sequence
0 → Ω(θl)⊗RSl → H∆t−1 → X → 0, with Sl ∈ R-proj. Applying G after Ul⊗R− yields by construction
that there exists a non-zero homomorphism from ∆l ⊗R Sl to ∆t−1 ⊗R Ul which cannot happen because
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l > t − 1 (the latter can be seen by applying R(m) ⊗R − to this (A,R)-monomorphism). Thus, there

exists an exact sequence 0 → Ω(ν) ⊗R Sν → H∆t−1
π−→ X → 0 with ν ∈ Θ \ {θ|Λ|, . . . , θt+1} a maximal

element, X ∈ F(Ω̃Θ\{θ|Λ|,...,θt+1,ν}) and Sν ∈ R-proj. If π = 0 then we fix θt−1 = ν. Otherwise, applying

G yields an exact sequence 0 → GΩ(ν)⊗R Sν → ∆t−1 → GX → 0 with GX ∈ F(∆̃l<t). It follows that
since Gπ ̸= 0 that GX ≃ ∆t−1 ⊗R St−1 for some St−1 ∈ R-proj. Further since R(m)⊗R − is right exact
the surjective map ∆t−1 → ∆t−1 ⊗R St−1 induced by Gπ becomes an isomorphism over A(m) for all
m ∈ MaxSpecR. By Nakayama’s Lemma this map must be an isomorphism over A and so Gπ is also an
isomorphism. This means that Sν = 0 and H∆t−1 ∈ F(Ω̃Θ\{θ|Λ|,...,θt+1,ν}). By going through all possible
standard modules that might appear in the filtration ofH∆t−1 we obtain (eventually after a finite number
of steps) that H∆t−1 ≃ Ω(θt−1)⊗R Ut−1 for some Ut−1 ∈ R-proj, and θt−1 ∈ Θ \ {θ|Λ|, . . . , θt+1}. Using
the same reasoning, we obtain that the result holds for ∆|Λ| ∈ A-proj and so the claim follows.

Moreover, we constructed an increasing bijection {1, . . . , |Λ|} → Θ and so a bijection of posets
ϕ : Λ → Θ. Symmetrically applying the same arguments reversing the roles of ∆ and Ω, we obtain that,
for all t ∈ {1, . . . , |Λ|}, there exists it ∈ {1, . . . , |Λ|} so that GΩ(θt) ≃ ∆it ⊗R Ft for some Ft ∈ R-proj.
Hence, Ω(θt) ≃ H∆it ⊗R Ft ≃ Ω(θit) ⊗R Uit ⊗R Ft. It follows that θt = θit and both Ft and Uit are
invertible R-modules.

It follows that HomB(HA,Ω(ϕ(µ))) ≃ GΩ(ϕ(µ)) ≃ ∆(µ)⊗R Uµ, Uµ ∈ Pic(R), for all µ ∈ Λ.

7 Ringel duality

Characteristic tilting modules allow us also in the integral setup to construct new split quasi-hereditary
algebras, and to see that in fact split quasi-hereditary algebras over Noetherian rings do come in pairs.
The origin of this phenomenon is in [Rin91] inspired by the work developed in [AR91]. The former studies
the endomorphism algebra of a characteristic tilting module over an Artinian quasi-hereditary algebra.

Lemma 7.1. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Assume that T =
⊕
λ∈Λ

T (λ) is a

characteristic tilting module. Fix B = EndA(T )
op. Then the following assertions hold.

(a) The functor G = HomA(T,−) : A-Mod → B-Mod restricts to an exact equivalence between F(∇̃)
and F(∆̃B) with ∆B(λ) := G∇(λ), λ ∈ Λ.

(b) (B, {∆B(λ)λ∈Λop}) is a split quasi-hereditary R-algebra, where Λop is the set Λ together with the
partial order ≤B defined in the following way: λ ≤B µ if and only if λ ≥ µ.

Proof. The functor HomA(T,−) is exact on F(∇̃) because Ext1A(T,M) = 0 for every M ∈ F(∇̃). Let
N ∈ F(∇̃). Let ∆ → {1, . . . , n}, ∆i 7→ i be an increasing bijection. Hence, we have a filtration

0 ⊂ I1 ⊂ · · · ⊂ In = N, Ii/Ii−1 ≃ Ii ⊗R Ui, i = 1, . . . , n. (52)

Applying HomA(T,−) yields the exact sequence

0 → HomA(T, Ii−1) → HomA(T, Ii) → HomA(T,∇i ⊗R Ui) → 0. (53)

By Lemma 2.2, HomA(T,∇i⊗R Ui) ≃ HomA(T,∇i)⊗R Ui. So, HomA(T,−) sends a module N ∈ FA(∇̃)

to HomA(T,N) ∈ FB( ˜HomA(T,∇)). Fix ∆B(i) = G∇i. We shall now prove that G is full and faithful
on F(∇̃). Let Y ∈ A-mod. Then,

HomA(T, Y ) ≃ G(Y ) = HomB(B,GY ) ≃ HomB(HomA(T, T ), GY ) ≃ HomB(GT,GY ). (54)

Hence, for any X ∈addT , we have HomA(X,Y ) ≃ HomB(GX,GY ) for all Y ∈ A-mod . Let X ∈ FA(∇̃).
By Theorem 4.9, there exists an addT -presentation T1 → T0 → X → 0. Applying HomA(−, Y ) and
HomB(G−, GY ) we obtain the following commutative diagram with exact rows
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0 HomA(X,Y ) HomA(T0, Y ) HomA(T1, Y )

0 HomB(GX,GY ) HomB(GT0, GY ) HomB(GT1, GY )

≃ ≃ .

By diagram chasing, HomA(X,Y ) ≃ HomB(GX,GY ) for all X,Y ∈ FA(∇̃).
Now we claim that Ext1A(Ui⊗R∇i, N) ≃ Ext1B(G(Ui⊗R∇i), GN) for all N ∈ FA(∇̃) and Ui ∈ R-proj.
Consider the exact sequence 0 → Yi → Ti → ∇i → 0. Applying Ui ⊗R − we get the exact sequence

0 → Ui ⊗R Yi → Ui ⊗R Ti → Ui ⊗R ∇i → 0. (55)

Let N ∈ FA(∇̃). Recall that G(Ti⊗R Ui) ∈ B-proj, so applying HomA(−, N) and HomB(−, GN) ◦G we
obtain the following commutative diagram with exact rows

HomA(Ti ⊗R Ui, N) HomA(Yi ⊗R Ui, N) Ext1A(∇i ⊗R Ui, N) 0

HomB(G(Ti ⊗R Ui), GN) HomB(GYi ⊗R Ui, GN) Ext1B(G∇i ⊗R Ui, GN) 0

≃ ≃ .

It follows by diagram chasing that Ext1B(G(∇i ⊗R Ui), GN) ≃ Ext1A(∇i ⊗R Ui, N).
Now consider X ∈ FB(∆̃B). Then, there is a filtration

0 ⊂ X1 ⊂ · · · ⊂ Xn = X, Xi/Xi−1 ≃ ∆B(i)⊗R Ui, Ui ∈ R-proj . (56)

We claim that there exists N ∈ FA(∇̃) such that GN = X. We will prove it by induction on the size of
the filtration of X. It is clear that X1 = ∆B(1)⊗R U1 ≃ G∇1 ⊗R U1 ≃ G(∇1 ⊗R U1). Assume that the
result holds for Xi−1. Consider the exact sequence

0 → Xi−1 → Xi → ∆B(i)⊗R Ui → 0. (57)

Here, ∆B(i)⊗R Ui ≃ G(∇i ⊗R Ui). By induction, Xi−1 ≃ GNi−1 for some Ni−1 ∈ F(∇̃). So, the exact
sequence in (57) belongs to Ext1B(G(∇i ⊗R Ui), GNi−1). Hence, there exists an exact sequence

0 → Ni−1 → Ni → ∇i ⊗R Ui → 0 (58)

and its image by G is isomorphic to (57). In particular, GNi ≃ Xi. It follows that G : F(∇̃) → F(∆̃B)
is dense and we obtain (a).

By Corollary 5.4, ∆B(λ) = HomA(T,∇(λ)) ∈ R-proj. Further, GT ≃ B is a progenerator of B-mod.
Assume that HomB(∆B(λ

′),∆B(λ
′′)) ̸= 0. Then, 0 ̸= HomB(G∇(λ′), G∇(λ′′)) ≃ HomA(∇(λ′),∇(λ′′)).

By Theorem 3.5, λ′ ≥ λ′′. Thus, λ′ ≤R λ′′.
Since Y (λ) ∈ F(∇̃µ<λ), it follows that GY (λ) ∈ F(∆̃Bµ<λ

) = F(∆̃Bµ>Bλ
). As T (λ) ∈ addT , it

follows that GT (λ) ∈ B-proj. So, the exact sequence 0 → GY (λ) → GT (λ) → ∆B(λ) → 0 satisfies (iv)
of Definition 2.3. Since G is full and faithful on F(∇̃), the following holds

EndB(∆B(λ)) ≃ EndB(G∇(λ)) ≃ EndA(∇(λ)) ≃ R. (59)

Thus, (b) holds.

The Ringel dual of a split quasi-hereditary algebra (A, {∆(λ)λ∈Λ}) (or just of A when the
there is no ambiguity on the underlying quasi-hereditary structure), is, up to Morita equivalence, the
endomorphism algebra EndA(T )

op of a characteristic tilting module T of A. We will write R(A) to denote
a Ringel dual of A. As in the classical case [Rin91, Theorem 7] computing the Ringel dual of a Ringel
dual yields back the original split quasi-hereditary structure.
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Proposition 7.2. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary algebra. Let R(A) be a Ringel dual of
A. Then, R(R(A)) is Morita equivalent to A as split quasi-hereditary algebra.

Proof. Define I =
⊕
λ∈Λ

I(λ), where I(λ) is an (A,R)-injective module in the conditions of Theorem

3.5. In particular, each I(λ) ∈ F(∇̃). We will denote by G and B the functor HomA(T,−) and the
Ringel dual R(A), respectively. By Lemma 7.1(b), GI ∈ F(∆̃B). By Lemma 7.1, Ext1B(G∇(λ), GN) ≃
Ext1A(∇(λ), N) for every N ∈ F(∇̃B), for every λ ∈ Λ. In particular, for N = I, and for every λ ∈ Λ,

Ext1B(∆B(λ), GI) ≃ Ext1A(∇(λ), I) ≃ Ext1(A,R)(∇(λ), I) = 0. (60)

By Theorem 4.1, GI ∈ F(∇̃B). Hence, GI is a partial tilting module. Applying G to the exact sequence

0 → ∇(λ) → I(λ) → C(λ) → 0 (61)

we obtain the exact sequence 0 → ∆B(λ) → GI(λ) → GC(λ) → 0 with GC(λ) ∈ F(∇̃Bµ>λ
) =

F(∇̃Bµ<Bλ
). Therefore, GI is a characteristic tilting module. Furthermore, since G is full and faith-

ful on F(∇̃A), we can write EndB(GI)
op ≃ EndA(I)

op ≃ EndA(DI) which is Morita equivalent to
EndA(A) ≃ A because addDI =addAA.

Note that R(R(A)) is isomorphic to EndA(DI) ≃ EndA(Pop) as R-algebras, where Pop is the progener-
ator

⊕
λ∈Λ Pop(λ) making (Aop, D∇(λ)) a split quasi-hereditary algebra. So, the equivalence of categories

is given by the functor HomA(HomA(Pop, A),−) : A-mod → R(R(A))-mod. Denote this functor by H.
It is enough to prove that HomA(HomA(Pop, A),∆(λ)) ≃ ∆R(R(A))(λ) for every λ ∈ Λ.

Observe that, if λ ∈ Λ is maximal, then DHomA(∆(λ), A) ≃ I(λ) (see Remark 3.3). Thus,

H∆(λ) ≃ HomA(HomA(∆(λ), A), Pop) ≃ HomA(I,DHomA(∆(λ), A)) ≃ HomA(I, I(λ)) (62)

≃ HomR(A)(GI,GI(λ)) ≃ ∆R(R(A))(λ). (63)

Assume that |Λ| > 1. Let J be the split heredity ideal associated with ∆(λ). Denote by HJ the functor

HomA(HomA(
⊕

µ∈Λ\{λ}

P (µ)/JP (µ), A/J),−) : A/J-mod → R(R(A))-mod .

By induction, HJ∆(µ) ≃ ∆R(R(A/J))(µ) = ∆R(R(A))(µ) for every µ ̸= λ, µ ∈ Λ. Hence, it is enough
to check that HJX ≃ HX for all X ∈ A/J-mod. Since J = J2 it follows HomA(P (µ)/JP (µ), A/J) ≃
HomA(P (µ), A/J) for every µ ∈ Λ and HomA(P (λ), A/J) = 0 (see for example [Rou08, Proposition 4.7]).
Therefore,

HomA(
⊕

µ∈Λ\{λ}

P (µ)/JP (µ), A/J) ≃ HomA(Pop, A/J).

Moreover, HomA(HomA(Pop, J), X) = 0 for all X ∈ A/J-mod. Thus, HX ≃ HJX for every X ∈
A/J-mod. Hence, H sends ∆(µ) to ∆R(R(A))(µ) for all µ ∈ Λ.

Corollary 7.3. Let (A-mod, {∆(λ)λ∈Λ}) and (B-mod, {Ω(χ)χ∈X}) be two split highest weight categories.

B is a Ringel dual of A if and only if there is an exact equivalence between the categories F(∆̃) and F(℧̃B),
where ℧ denotes the set of costandard modules of B.

Proof. Let B = R(A) be a Ringel dual of A. By Lemma 7.1, there is an exact equivalence
F(∇̃R(A)) ≃ F(∆̃R(R(A))). By Proposition 7.2, there is an exact equivalence F(∆̃R(R(A))) ≃ F(∆̃A).

Conversely, assume that there is an exact equivalence between the categories F(∆̃A) and F(℧̃B). By
Lemma 7.1, there is an exact equivalence F(∆̃A) ≃ F(℧̃B) ≃ F(Ω̃R(B)). By Theorem 6.1, R(B)-mod and
A-mod are equivalent as split highest weight categories. By Proposition 7.2, we conclude that B-mod
and R(A)-mod are equivalent as split highest weight categories.
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7.1 Ringel self-duality

We say that a split quasi-hereditary algebra (A, {∆(λ)λ∈Λ}) over a commutative Noetherian ring R is
Ringel self-dual if A-mod and R(A)-mod are equivalent as split highest weight categories, where R(A)
is a Ringel dual of A. In view of Corollary 7.3, A is Ringel self-dual if and only if there exists an exact
equivalence between F(∆̃) and F(∇̃).

Lemma 7.4. Let R be a local commutative Noetherian ring with maximal ideal m. Let (A, {∆(λ)λ∈Λ}) be
a split quasi-hereditary R-algebra. Then, A is Morita equivalent to its Ringel dual as split quasi-hereditary
algebra if and only if A(m) is Morita equivalent to its Ringel dual as split quasi-hereditary algebra.

Proof. Assume that A is Morita equivalent to its Ringel dual as split quasi-hereditary algebra. That
is, there exists a progenerator P of A-mod so that the Ringel dual of A is the endomorphism algebra
EndA(P )

op and HomA(P,−) : A-mod → R(A)-mod is an equivalence of categories that sends ∆A(λ) to
∆R(A)(ϕ(λ)) for some bijection ϕ : Λ → Λop. Hence, P (m) is a progenerator of A(m) and

EndA(m)(P (m))op ≃ EndA(P )
op ⊗R R(m) ≃ EndA(T )

op ⊗R R(m) ≃ EndA(m)(T (m))op. (64)

Moreover,
HomA(m)(P (m),∆(λ)(m)) ≃ ∆R(A)(ϕ(λ))⊗R Uλ(m) ≃ ∆R(A)(ϕ(λ))(m).

Hence, A(m) is Ringel self-dual.
Conversely, assume that A(m) is Morita equivalent to its Ringel dual as split quasi-hereditary algebras.

Since A is semi-perfect we can assume that the projective modules P (λ) are the projective covers of ∆(λ).
Hence, if P(m) is the progenerator giving the Morita equivalence between A and its Ringel dual, we can
choose P ∈ A-mod so that P (m) ≃ P(m). In particular, P is a progenerator of A and for every λ ∈ Λ,

HomA(P,∆(λ))(m) ≃ HomA(m)(P(m),∆(λ)(m)) ≃ ∆R(A)(ϕ(λ))(m) (65)

for some bijection ϕ : Λ → Λop. By Propositions 5.7 and 5.8, HomA(P,∆(λ)) ≃ ∆R(A)(ϕ(λ)) since the
Picard group of R is trivial.

7.2 Endomorphism algebras of partial tilting modules

We say that an algebra A over a commutative Noetherian ring R has a duality ω if ω : A→ A is an anti-
isomorphism of algebras that satisfies ω2 = idA and it fixes a set of orthogonal idempotents {e1, . . . , et}
with the following property: for each maximal ideal m of R {em1 , . . . , emt } is a complete set of primitive
orthogonal idempotents of A/mA, where emi denotes the image of ei in A/mA.

We say that (A, {e1, . . . , et}) is a split quasi-hereditary algebra with a duality ι if ι is a duality
of A (with respect to the set of orthogonal idempotents {e1, . . . , et}) and A is split quasi-hereditary with
split heredity chain 0 ⊂ AetA ⊂ · · · ⊂ A(e1 + · · ·+ et)A = A. In such a case, we also say (A, {∆(λ)λ∈Λ})
is a split quasi-hereditary algebra with a duality ι if (A, {e1, . . . , et}) is a split quasi-hereditary algebra
with a duality ι with standard modules ∆(λ), λ ∈ Λ.

We say that (A, {∆(λ)λ∈Λ}) is a split quasi-hereditary cellular algebra if (A, {∆(λ)λ∈Λ}) is a
split quasi-hereditary algebra and a split heredity chain of (A, {∆(λ)λ∈Λ}) is also a cell chain of A with
respect to some involution.

The following result indicates that endomorphism algebras of partial tilting modules (which become
indecomposable under extension of scalars to fields) over a split quasi-hereditary algebra with a duality
are in some sense locally cellular. The classical case can be found in [AST18] and [BT17, Theorem 1.1].
For a background to cellular algebras, we refer to [GL96, KX98, KX99].

Theorem 7.5. Let R be a Noetherian commutative local ring and A a projective Noetherian R-algebra.
Assume that there exists a set of orthogonal idempotents {e1, . . . , et} so that (A, {e1, . . . , et}) is a split
quasi-hereditary algebra with a duality ι. Assume that T is a characteristic tilting module of A so that
each summand T (i)(m) is indecomposable over A(m) for every m ∈ MaxSpecR. Let M ⊂ T be the direct
sum of a finite number of summands T (i), i = 1, . . . , t. Then, EndA(M)op is a cellular algebra.
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Proof. The duality ι induces a functor ι(−) : A-mod → Aop-mod. In particular, ιP (i) = ι(Aei) = eiA
(see for example [FK11]) and so it follows that ι preserves the split quasi-hereditary structure. Consider
the contravariant functor ♮(−) : A-mod → A-mod given by D ◦ ι(−). So, ♮(−) is a duality functor
that interchanges ∆(i) with ∇(i) and as in Lemma 3.2 of [FK11] ♮T (i) ≃ T (i). Let s : T → ♮T be an
isomorphism of A-modules. Denote by α : EndA(T ) → EndA(

♮T ) the isomorphism of R-algebras, given
by α(f) = s ◦ f ◦ s−1, f ∈ EndA(T ) and denote by β : EndA(T ) → EndA(

♮T ) the anti-isomorphism of
R-algebras, given by β(f)(h)(t) = h(f(t)), h ∈ DT , t ∈ T . Put τ = β−1◦α. By Proposition 2.4 of [FK11],
τ is a duality of the Ringel dual R(A) := EndA(T )

op. That is, τ fixes all maps T ↠ T (i) ↪→ T for every
i, and τ2 = idR(A). In particular, τ fixes the idempotent f of R(A) such that HomA(T,M) ≃ R(A)f .
Observe that R(A) is split quasi-hereditary with standard modules HomA(T,∇(i)) with the reversed
order on {1, . . . , t}. Thus, if we denote by fi the idempotents T ↠ T (i) ↪→ T , R(A) has the split heredity
chain

0 ⊂ R(A)f1R(A) ⊂ · · · ⊂ R(A)(f1 + . . .+ ft)R(A) = R(A). (66)

By [Cru23, Proposition 4.0.1], R(A) is a cellular algebra. By [Cru23, Proposition 2.2.11], EndA(M)op ≃
EndR(A)(HomA(T,M))op is a cellular algebra.

Such condition on partial tilting modules holds for example if the ground ring is local regular with
Krull dimension one.

Proposition 7.6. Let R be a Noetherian commutative local regular ring with Krull dimension one and
with maximal ideal m. Let (A, {∆(λ)λ∈Λ}) be a split quasi-hereditary R-algebra. For each λ ∈ Λ there
are partial tilting modules T (λ) so that T (λ)(m) is indecomposable over A(m).

Proof. Denote by T(m)(λ) the indecomposable partial tilting module that fits into the exact sequence

0 → Z(λ) → T(m)(λ)
πm
λ−−→ ∇(λ)(m) → 0 and by πλ the surjective map T (λ) → ∇(l) given in (17). Since

both maps πm
λ and πλ(m) are surjective right F(∆(m))-approximations of ∇(λ)(m) we obtain that there

are maps g ∈ HomA(m)(T(m)(λ), T (λ)(m)), f ∈ HomA(m)(T (λ)(m), T(m)(λ)) satisfying πm
λ = πλ ◦ g and

πλ = πm
λ ◦ g. In particular, πm

λ = πm
λ ◦ f ◦ g. Since πm

λ is a minimal right approximation it follows
that f ◦ g is an isomorphism. Therefore, T(m)(λ) is a summand of T (λ)(m). Using Nakayama’s Lemma,
consider X to be an A-submodule of T (λ) satisfying X(m) ≃ T(m)(λ). Since gldimR ≤ 1 it follows that
X ∈ A-mod∩R-proj. By Proposition 5.7, X is a partial tilting module of A. So, we can replace T (λ)
by X because R(m) ⊗R − preserves filtrations by standard modules and so X must also fit into exact
sequences of the form (16) and (17).

In particular, a Ringel dual of a split quasi-hereditary algebra with a duality ι over a local commutative
Noetherian regular ring with Krull dimension at most one is Morita equivalent as split quasi-hereditary
algebra to a split quasi-hereditary cellular algebra.
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